MINOR RESEARCH PROJECT

[F.No.47-550/08(WRO), Dated: 15/01/08]

TITLE

"PHYSICO-CHEMICAL ANALYSIS OF BORE-WELLS DRINKING WATER IN MORBI-MALIA TERRITORY"

NAME OF THE INSTITUTE

MAHARAJA SHREE MAHENDRASINHJI SCIENCE COLLEGE MORBI, DIST-RAJKOT (GUJARAT)

PRINCIPAL INVESTIGATOR

Dr. B. M. BHESHDADIA
DEPARTMENT OF CHEMISRTY
MAHARAJA SHREE MAHENDRASINHJI SCIENCE
COLLEGE
MORBI, DIST-RAJKOT
(GUJARAT)

SUBMITED TO

UNIVERSITY GRANT COMMISSION WESTERN REGION OFFICE GANESH KHIND PUNE-411 007

MINOR RESEARCH PROJECT TITLE

"PHYSICO-CHEMICAL ANALYSIS OF BORE-WELLS DRINKING WATER IN MORBI-MALIA TERRITORY"

INTRODUCTION

India has a rich water resource including a wide network of rivers and vast alluvial basins to hold ground water. In spite of the availability of approximately 1100km³ water for meeting all kind of needs there are severe problems of water scarcity, primarily due to non-uniformity in availability. The problem has been further aggravated by the rapid increase in population thereby increasing the demand of water supply for irrigation, human and industrial consumption. Surface and ground water are major sources of drinking water in urban and rural India. In urban area water for drinking and various domestic purposes is supplied by municipal authorities, which supply it after a thorough treatment. However despite the treatment the water gets contaminated during the distribution process either due to leakage from water pipes or escape of protozoa and enteric virus through filters or formation of bio-film in storage and distribution systems or even seepage of soil nutrients and soil particles through breakage in supply system.

In fact industrial waste and the municipal solid waste have emerged as one of the leading causes of pollution of surface and ground water. In many part of the country available water is rendered non-potable because of presence of iron, nitrate, arsenic or heavy metals and pesticide used in farm excess. The situation gets worsened during the summer season due to water scarcity and rainwater discharge. Contamination of water resources available for household and drinking purposes with heavy elements, metal ions and harmful microorganisms is one of the serious

major health problems. As a result huge amount of money is spent for chemical treatment of contaminated water to make it potable. Thus there is a need to look for some useful indicators, both microbiological and physical, which can be used to monitor both drinking water system operation and performance. The problem of water contamination and scarcity are very severe in Morbi-Malia territory where there has been a rapid increase in population due to increase urbanization and industrialization. While the condition of water contamination and scarcity is very severe in Morbi-Malia city and rural area of both taluka. Both city and rural area are experience very frequent episodes of cholera and jaundice. A study has attempted to assess the physical and chemical properties of bore-wells drinking water being used in different parts of the Morbi-Malia city and rural area.

In continuation of earlier studies on bore-well water¹⁻³, here we have investigated intensively the Physico-Chemical analysis of drinking water of Morbi-Malia territory, located in Rajkot district of Gujarat state. Bore-well water is generally used for drinking and other domestic purposes in this area. The use of fertilizers and pesticides, manure, lime, septic tank, refuse dump etc. is the major sources of bore-well water pollution⁴. In the absence of fresh water supply people residing in this area use bore-well water for their domestic and drinking purpose. In order to assess water quality index, we have conducted the physico-chemical analysis of bore-well drinking water.

We have measured the some parameters of the collected water sample like temperature, salinity, alkalinity, total hardness, phosphate, sulphate, nitrate, pH, electrical conductivity, T.D.S., turbidity, dissolved oxygen, fluoride etc.

All above mentioned parameters and elements are found in all bore-well water at some concentration, due to some pollutants and nature of rocks. For example in ground water low and high concentration of fluoride may occur on the base of the nature of rocks and the occurrence of the fluoride-bearing minerals. Low concentration of fluoride prevents dental caries. However it has been observed that when fluoride intake through water, food and air increases to a specific level (1.0mg/l to 1.5mg/l) the beneficial effect is lost and harmful effect is seen with increasing concentration (above 1.5 mg/l). Excess intake of fluoride beyond permissible limit brings out dental and skeleton fluorisis along with some neurological disorder. Higher concentration of fluoride also causes respiratory failure, fall of blood pressure and genera paralysis. Fluoride ions inhibit a variety of enzymes - often by forming complexes with magnesium ion and other metal ions.

According to water and river commission Western Australia, ground water occupies the pores and crevices in sand, sand stone and other rocks. The crucial role which ground water plays as decentralized source of drinking water for millions of rural and urban families can not be undermined.

EXPERIMENTAL

In the present study bore-well water samples from twenty five different areas located in and around Morbi-Malia territory were collected in brown glass bottle with necessary precautions⁵.

All the chemicals were used of AR grade. Double distilled water was used for the preparation of reagents and solution. The major water quality parameters considered for the examination in this study are temperature, pH, D.O., turbidity, electrical conductivity, T.D.S., salinity, alkalinity, phosphate, sulphate, nitrate, fluoride, total hardness and chloride contents⁶.

Temperature, pH, D.O., turbidity, electrical conductivity, T.D.S., salinity, phosphate, nitrate and fluoride value were measured by water analysis kit, portable D.O. meter and manual methods. Total hardness of water was estimated by complexometric titration methods⁷. Chloride content was determined volumetrically by silver nitrate titrimetric method using potassium chromate as an indicator and was calculated in terms of mg/l. Alkalinity of water samples were measured volumetrically by titrimetric method⁷. Sulphate content was determined by volumetric method⁷.

RESULTS AND DISCUSSION

Temperature: In the present study, temperature in May-2009 ranged from 29.8 to 32.8°C and temperature in October-2009 ranged from 29.0 to 31.7°C.

D.O.: In the present study, D.O. in May-2009 ranged from 3.7 to 7.3 ppm. The minimum tolerance range is 4.0 ppm for drinking water. But the D. O. was found lower in sample station Nos. 1 and 8. In October-2009 D.O. ranged from 3.9 to 8.1 ppm. But the sample station No. 1 showed lower range.

pH: In the present study, pH in May-2009 ranged from 7.09 to 8.89. The tolerance pH limit⁸ is 6.5 to 8.5. The sample station No. 1, 3, 5, 6, 8, 11, 12, 13, 15, 16, 17, 21, 23, 24 and 25 showed higher pH than prescribed range. In October-2009 pH ranged from 7.58 to 9.06. The sample station No. 8, 12, 15, 16, 17, 20, 21 and 23 showed higher pH than the prescribed range.

Turbidity: In the present study, Turbidity in May-2009 ranged from 0.06 to 2.50 NTU and in October-2009 Turbidity ranged from 0.10 to

4.70.The tolerance range for Turbidity is 5 NTU¹⁰. So all the sample station Nos. have shown lower NTU values than the prescribed range.

Electrical conductance : In present study, Electrical conductance in May-2009 ranged from 0.78×10^{-3} to 6.10×10^{-3} mho/cm, while in October-2009 Electrical conductance ranged from 0.47×10^{-3} to 4.94×10^{-3} mho/cm.

T.D.S.: In the present study, TDS in May-2009 ranged from 397 to 3090 ppm. According to WHO⁹ and Indian standards¹⁰, TDS value should be less than 500 ppm for drinking water. The sample station Nos. 1 to 25 except 10 showed higher range compare to prescribed WHO and Indian standards. In October-2009 TDS ranged from 237 to 2490 ppm. But sample station Nos. 1 to 25 except 7, 10, 20 and 21 showed higher range than prescribed range.

Salinity: In the present study, Salinity in May-2009 ranged from 390 to 3080 ppm and in October-2009 Salinity ranged from 240 to 2470 ppm.

Alkalinity: In the present study, Alkalinity in May-2009 ranged from 100 to 660 ppm while in October-2009 Alkalinity ranged from 120 to 700 ppm.

Phosphate: In the present study, Phosphate in May-2009 ranged from 11 to 42 mg/l and in October-2009 Phosphate ranged from 10 to 31 mg/l. The evaluated value of phosphate in the present study is higher than the prescribed value¹³. The higher value of phosphate is mainly due to the use of fertilizers and pesticides by the people residing in this area. If phosphate is consumed in excess, phosphine gas is produced in gastro-intestinal tract on reaction with gastric.

Nitrate: In the present study, Nitrate in May-2009 ranged from 84 to 447 mg/l and in October-2009 Nitrate ranged from 90 to 415 mg/l. The tolerance range for Nitrate is 20-45 mg/l. Nitrate nitrogen is one of the

major constituents of organism along with carbon and hydrogen as amino acids proteins and organic compounds in the bore-well water¹⁴. If the nitrate reduces to nitrite then it causes methaemoglobinaemia in infants^{15,16} and also diarrhea.

Sulphate: In the present study, Sulphate in May-2009 ranged from 125.29 to 365.08 mg/l and in October-2009 Sulphate ranged from 105.15 to 355.08 mg/l. The tolerance range of Sulphate is 200-400 mg/l¹².

Total hardness: In the presence study, Total hardness in May-2009 ranged from 110 to 980 ppm and in October-2009 Total hardness ranged from 80 to 810 ppm. The tolerance range for Total hardness¹¹ is 300-600 ppm.

Chloride: In the present study, Chloride in May-2009 ranged from 120.2 to 1469.7 mg/l and in October-2009 Chloride ranged from 63.9 to 1180.9 mg/l. While the tolerance range for chloride is 200-1000 mg/l¹⁰.

Fluoride: In the present study, Fluoride in May-2009 ranged from 0.9 to 1.2 mg/l and in October-2009 Fluoride ranged from 0.9 to 1.2 mg/l. While the tolerance range for Fluoride is 1.0 to 1.5 mg/l¹⁰.

In the next year in same season no major change is seen in all the parameters.

ACKNOWLEDGEMENT

The Principle Investigator is thankful to UGC for financial assistance in the form of Minor Research Project [F No. 47-550/08 (WRO) Dated:-15/01/2009]. The Principle Investigator is also thankful to The Sarvodaya Education Society, Morbi and the Principal, M. M. Science College, Morbi, for providing necessary facilities.

TABLE-1 ANALYSIS RESULT OF THE SAMPLES COLLACTED FROM MORBI CITY IN MAY - 2009

S.St.	Name of Samule Station	Temp D.O.	D.O.	Ha	Turb.	Conduct.	T.D.S.	Salinity	T.D.S. Salinity Alkalinity	Phoshph oto	Sulphate Nitrate		Flourid	Total	Chloride
No:	rame of Sample Station	(၁)	(0C) (ppm)		(NTU)	(mho/cm)	(mdd) (mdd)	(mdd)	(mdd)	anc (mg/l)	(mg/I)	(mg/I)	(mg/I)	(ppm)	(mg/I)
1	SHRI RAM SOCIETY	30.6	3.9	8.69	0.17	2.00X10 ⁻³	1020	1000	099	15	155.15	445	1.1	110	166.1
2	YADUNANDAN SOCIETY 30.3	30.3	5.3	7.09	0.12	2.55X10 ⁻³	1290	1270	500	20	298.23	88	1.0	310	293.9
co	PANCHAVATY SOCIETY 31.5		4.3	8.52	90.0	$1.69 X 10^{-3}$	850	840	260	22	262.31	426	6.0	630	309.2
4	JAIN DERASAR	29.8	4.4	8:38	0.36	2.17X10 ⁻³	1100	1090	260	32	273.01	255	1.2	522	281.2
2	GAYATRI NAGAR	31.3	9.9	8.69	0.13	6.10X10 ⁻³	3090	3080	380	21	233.58	196	1.2	086	1469.7
9	BHAGVATI PARK	31.1	6.4	8.80	0.00	3.32X10 ⁻³	1680	1660	620	42	146.12	407	1.1	448	447.3
7	SCIENCE COLLEGE	32.8	4.8	8.47	0.32	1.87X10 ⁻³	950	930	100	21	163.72	447	1.0	744	393.7
∞	RELIF NAGAR	30.9	3.7	8.73	0.15	2.41X10 ⁻³	1220	1210	360	17	216.37	. 125	6.0	362	391.1
6	BHUVNESHWER PARK	31.3	5.2	8.30	0.12	2.28X10 ⁻³	1160	1150	100	18	311.44	409	1.2	710	457.6
10	10 KENAL ROAD	30.2	7.3	8.30	0.27	0.92X10 ⁻³	465	460	160	38	193.15	340	1.1	310	140.6

TABLE - 2 ANALYSIS RESULT OF THE SAMPLES COLLACTED FROM MALIA CITY IN MAY-2009

0.14 6.00X10 ⁻³ 3050 3040 370 20 233.58 195 0.19 4.25X10 ⁻³ 2120 2110 620 36 223.21 293 0.09 3.30X10 ⁻³ 1680 1670 610 40 145.12 406 0.11 5.11X10 ⁻³ 2600 2580 120 15 266.48 124	S.St. No:	Name of Sample Station	Temp (°C)	Temp D.O. (Ppm)	PH	Turb. (NTU)	Conduct. T.D.S. Salinity Alkalinity (mho/cm) (ppm) (ppm) (ppm)	T.D.S. (ppm)	T.D.S. Salinity Alkalinit (ppm) (ppm)		Phoshph ate (mg/I)	Sulphate Nitrate (mg/I)	Nitrate (mg/I)	Flourid e (mg/L)	Flourid Total e Hardness (mg/l) (ppm)	Chloride (mg/l)
30.8 5.2 8.80 0.19 4.25X10 ⁻³ 2120 2110 620 36 223.21 293 ON ROAD 31.2 6.5 8.75 0.09 3.30X10 ⁻³ 1680 1670 610 40 145.12 406 31.6 5.9 8.20 0.11 5.11X10 ⁻³ 2600 2580 120 15 266.48 124	111		31.5	8.9	8.65	0.14	6.00X10 ⁻³	3050		370	20		195	1.2	096	1460.7
0.09 3.30X10 ⁻³ 1680 1670 610 40 145.12 406 0.11 5.11X10 ⁻³ 2600 2580 120 15 266.48 124	12		30.8	5.2	8.80	0.19	4.25X10 ⁻³	2120	2110	620	36	223.21	293	6.0	195	678.4
0.11 5.11X10 ⁻³ 2600 2580 120 15 266.48 124	13	RAIL, STATION ROAD	31.2	6.5	8.75	0.00	3.30X10 ⁻³		1670	610	40	1	406	1.1	445	442.8
3	14		31.6	5.9		0.11	5.11X10 ⁻³	2600	2580	120	15	266.48	124	1.0	345	1314.5
320 21 291.23 84	15	RAMJI MANDIR CHOCK	31.3	5.7	88.8	0.44	3.56X10 ⁻³	1810	1800	320	21	291.23	84	1.1	245	666.5

TABLE - 3 ANALYSIS RESULT OF THE SAMPLES COLLACTED FROM MORBI-MALIA RURAL IN MAY - 2009

											No. of the last of				
S.St.	Name of Sample Station	Temp	D.O.	PH	Turb.	Conduct.	T.D.S.	Salinity	T.D.S. Salinity Alkalinity	Phoshph ate	Sulphate Nitrate	Nitrate	Flourid	Total Hardness	Chloride
		(2)	(mdd)		(MID)	(mmo/cm)	(ppm)	(ppm) (ppm)	(mdd)	(mg/I)	(mg/I)	(mg/I)	(mg/I)	(mdd)	(mg/I)
16	JETPAR	30.9	5.1	8.83	0.18	4.21X10 ⁻³	2130	2120	620	37	221.21	291	6.0	192	677.3
17	ANIYARI	31.2	5.6	8.89	0.45	3.57X10 ⁻³	1810	1800	320	22	293.23	85	1.2	240	662.0
18	KHAKHARECHI	31.6	6.1	8.21	0.15	1.43×10^{-3}	720	720	220	21	125.29	395	1.1	276	153.4
19	SARVAD	31.7	5.7	8.20	0.11	5.13X10 ⁻³	2600	2570	120	91	267.48	125	1.0	342	1316.3
20	MOTA DAHISHARA	31.2	5.2	8.48	1.70	1.72X10 ⁻³	870	860	440	14	269.01	420	6.0	122	150.8
21	KHAKHARADA	32.0	5.7	8.53	0.46	$0.78X10^{-3}$	397	390	160	11	134.51	360	1.2	196	130.3
22	JODHAPAR NADI	30.9	6.1	7.95	0.27	1.82X10 ⁻³	920	910	200	12	269.01	317	6.0	554	391.1
23	CHACHAPAR	31.1	5.3	8.60	2.50	1.98X10 ⁻³	1000	066	440	20	365.08	403	1.0	176	301.6
24	NANI VAVADI	32.1	6.2	8.79	0.30	1.01X10 ⁻³	510	900	240	27	278.23	390	1.2	194	120.2
25	25 NICHI MANDAL	31.8	31.8 5.5 8.63	8.63	0.12	1.30X10 ⁻³	099	959	300	14	146.12	419	1.1	216	199.4

TABLE - 4 ANALYSIS RESULT OF THE SAMPLES COLLACTED FROM MORBI CITY IN OCT - 2009

S.St.	Name of Sample Station	Temp	Temp D.O.	Ън	Turb.	Conduct.	T.D.S.	Salinity	Ţ.	Phoshph ate	Sulphate Nitrate	Nitrate	Flourid	Total Hardness	Chloride
		(0)	(mdd)		(0111)	(mmo/cmm)	(mdd)	(mdd)	(mdd)	(mg/I)	(11/Sill)	(mg/1)	(mg/I)	(mdd)	(mg/n)
-	SHRI RAM SOCIETY	29.4	3.9	8.10	0.25	1.97X10 ⁻³	1000	066	200	11	105.15	345	1.0	06	230.0
7	YADUNANDAN SOCIETY 29.2		5.3	7.58	0.56	2.28X10 ⁻³	1160	1150	099	13	188.23	92	1.0	280	242.8
3	PANCHAVATY SOCIETY 30.6		5.6	8.41	0.94	1.39X10 ⁻³	710	700	420	20	182.31	401	6.0	500	212.1
4	JAIN DERASAR	29.0	5.3	8.38	0.42	1.78X10 ⁻³	006	068	360	29	223.01	235	1.1	400	240.2
5	GAYATRI NAGAR	30.4	7.7	8.21	0.49	4.94X10 ⁻³	2490	2470	580	19	203.58	176	1.1	810	1180.9
9	BHAGVATI PARK	30.3	7.4	8.45	0.15	2.30X10 ⁻³	1390	1380	089	36	136.12	377	1.0	350	347.6
7	SCIENCE COLLEGE	31.7	5.9	8.25	0.55	1.21X10 ⁻³	500	490	580	17	143.72	402	6.0	624	303.7
∞	RELIF NAGAR	29.8	4.8	8.96	0.53	$1.51X10^{-3}$	770	770	440	15	196.37	105	6.0	160	173.8
6	BHUVNESHWER PARK	30.5	6.1	8.30	0.50	1.16X10 ⁻³	590	580	220	16	281.44	369	1.1	320	168.7
10	10 KENAL ROAD	29.4	8.1	8.44	0.30	$0.89X10^{-3}$	450	450	320	34	173.15	305	1.0	310	120.2

TABLE - 5 ANALYSIS RESULT OF THE SAMPLES COLLACTED FROM MALIA CITY IN OCT-2009

S.St. No:	Name of Sample Station	Temp (°C)	Temp D.O. (Ppm)	Рн	Turb. (NTU)	Conduct. (mho/cm)	T.D.S. (ppm)	T.D.S. Salinity Alkalinit (ppm) (ppm)	>	Phoshph ate (mg/l)	Sulphate Nitrate (mg/l)	Nitrate (mg/l)	Flourid e (mg/l)	Total Hardness (ppm)	Chloride (mg/l)
11	11 MATAM CHOCK	30.5	7.8	8.20	0.48	30.5 7.8 8.20 0.48 4.90X10 ⁻³ 2460	2460	2450	580	18	205.58	175	1.0	810	1181.8
12	12 BHISTI VAD	30.0	6.4	8.61	6.4 8.61 0.33	2.03×10^{-3}	1030	1010	420	37	201.21	290	6.0	190	343.3
13	13 RAIL, STATION ROAD	30.4	7.5 8.44		0.14	2.29X10 ⁻³	1380	1370	089	35	136.12	375	1.0	355	346.7
14	14 KHARIVADI	30.8	6.7 8.26	8.26	1.22	4.30X10 ⁻³	2180	2170	120	14	236.48	127	1.1	300	1267.0
15	15 RAMJI MANDIR CHOCK 30.6 6.6 8.53 0.50 3.00X10 ⁻³ 1550 1540	30.6	9.9	8.53	0.50	3.00×10^{-3}	1550	1540	460	20	274.23	92	1.0	240	608.2

TABLE - 6 ANALYSIS RESULT OF THE SAMPLES COLLACTED FROM MORBI-MALIA RURAL IN OCT - 2009

S.St.		Temp	D.O.		Turb.	Conduct.	T.D.S.	Salinity	T.D.S. Salinity Alkalinity	Phoshph	Sulphate Nitrate		Flourid	Hardness	Chloride
No:	Name of Sample Station	(C)	(0C) (ppm)	L.	(NTU)	(mho/cm)	(mdd)	(mdd)	(mdd)	ate (mg/I)	(mg/I)	(mg/I)	(T/gm)	(ppm)	(mg/I)
16	16 JETPAR	30.1	6.2	8.63	0.34	2.02X10 ⁻³	1030	1020	420	38	201.21	295	6.0	190	345.1
17	ANTYARI	30.5	6.4	8.52	0.50	3.08X10 ⁻³	1560	1550	460	21	273.23	06	1.1	230	610.9
18	KHAKHARECHI	30.5	7.0	8.20	0.10	1.44X10 ⁻³	730	720	280	22	118.29	397	1.1	260	143.1
19	SARVAD	30.9	6.5	8.27	1.20	4.32X10 ⁻³	2190	2170	120	15	237.48	127	1.1	300	1265.2
20	MOTA DAHISHARA	30.4	6.1	8.69	0.36	0.86X10 ⁻³	434	430	220	15	239.01	415	6.0	110	145.7
21	KHAKHARADA	31.0	8.9	8.52	0.85	0.85 0.47X10 ⁻³	237	240	160	10	134.51	355	1.2	150	0.69
22	22 JODHAPAR NADI	30.0	7.0 8.17	8.17	0.68	$1.27X10^{-3}$	640	640	200	12	249.01	313	6.0	370	250.5
23	CHACHAPAR	30.2		5.9 9.06	4.70	1.62X10 ⁻³	820	820	520	21	355.08	401	1.0	80	242.8
24	24 NANI VAVADI	31.3	31.3 7.1		8.19 0.53	0.74X10 ⁻³	374	370	360	26	270.23	391	1.1	140	63.9
25	25 NICHI MANDAL	31.1	6.3	8.10	31.1 6.3 8.10 0.58	1.75X10 ⁻³	890	880	360	15	145.12	414	1.2	290	337.4

TABLE-7 ANALYSIS RESULT OF THE SAMPLES COLLACTED FROM MORBI CITY IN MAY - 2010

18.8		Temp	D.O.		Turb.	Conduct.	T.D.S.	Salinity	T.D.S. Salinity Alkalinity	Phoshph	Sulphate Nitrate	Nitrate	Flourid	Lotal	Chloride
No:	Name of Sample Station	(C)	(°C) (ppm)	L.	(NTU)	(mho/cm)	(mdd)	(mdd)	(mdd)	ate (mg/I)	(mg/I)	(mg/I)	(mg/I)	(ррт)	(mg/I)
-	SHRI RAM SOCIETY	30.4	4.1	8.70	0.22	2.10X10 ⁻³	1010	1000	959	16	158.18	441	1.1	115	162.5
7	YADUNANDAN SOCIETY 30.2	30.2	5.5	7.10	0.23	2.47X10 ⁻³	1280	1270	510	20	292.25	87	1.0	305	298.9
co	PANCHAVATY SOCIETY 31.7		4.4	8.42	80.0	1.71X10 ⁻³	855	845	250	21	265.33	420	6.0	610	305.2
4	JAIN DERASAR	29.6	29.6 4.5	8.48	0.39	2.20X10 ⁻³	1110	1090	250	30	275.02	265	1.1	512	285.2
2	GAYATRI NAGAR	31.5	31.5 6.8	8.59	0.15	6.15X10 ⁻³	3070	3060	370	20	230.55	191	1.2	096	1465.7
9	BHAGVATI PARK	31.0	31.0 6.6 8.75		0.10	3.37X10 ⁻³	1670	1660	009	41	142.18	417	1.1	438	440.3
7	SCIENCE COLLEGE	32.6	4.9 8.56	8.56	0.35	1.82X10 ⁻³	940	930	100	20	168.62	445	1.0	734	398.7
8	RELIF NAGAR	30.8	3.9	99.8	0.18	2.37X10 ⁻³	1225	1210	350	18	220.47	135	6.0	360	395.1
6	BHUVNESHWER PARK 31.5 5.4 8.37	31.5	5.4		0.15	2.23X10 ⁻³	1165	1150	110	19	321.44	415	1.2	069	452.6
10	10 KENAL ROAD	30.1	30.1 7.3 8.39	8.39	0.31	0.98×10^{-3}	460	455	150	36	198.21	330	1.0	305	145.6

TABLE - 8 ANALYSIS RESULT OF THE SAMPLES COLLACTED FROM MALIA CITY IN MAY-2010

000		Tomn	0.0		Turk	Conduct T D C Solinity Allolinity	The	Colinity		Phoshph	Culphoto	_	Flourid	Total	Chlorido
No:	Name of Sample Station	(C)	(°C) (ppm)	\mathbf{P}^{H}	(NTU)	Conduct. 1.D.3. Samuel Annual (mho/cm) (ppm) (ppm) (ppm)	(ppm)	(ppm)	(ppm)	ate (mo/I)	(mg/I) (mg/I)	(mg/I)	e (mg/I)	Hardness (npm)	(mg/T)
111	11 MATAM CHOCK	31.7	31.7 6.9 8.62 0.1	8.62	0.18	18 6.06X10 ⁻³ 3040 50 30	3040	30 30	390	20	20 230.48 205	205	11	950	950 1450.7
12	12 BHISTI VAD	30.7	30.7 5.5 8.77 0.1	8.77	0.17	17 4.35X10 ⁻³ 2110 2100	2110	2100	009	34	229.28	285	8.0	205	688.4
13	13 RAIL. STATION ROAD 31.3 6.7 8.71 0.1	31.3	6.7	8.71		3.33X10 ⁻³ 1690	1690	1680	009	38	151.12	416	1.1	440	445.7
14	14 KHARIVADI	31.8	5.8	8.29	0.13	31.8 5.8 8.29 0.13 5.10X10 ⁻³ 2610 2595	2610	_	130	16	16 261.36 129	129	1.0	350	1324.5
15	15 RAMJI MANDIR CHOCK 31.5 5.9 8.78 0.41 3.46X10 ⁻³ 1820 1810 310	31.5	5.9	8.78	0.41	3.46X10 ⁻³	1820	1810	310	20	290.21	85	1.2	250	9.999

TABLE - 9 ANALYSIS RESULT OF THE SAMPLES COLLACTED FROM MORBI-MALIA RURAL IN MAY - 2010

S.St. No:	Name of Sample Station	Temp D.O. (ppm)	Гетр D.O. (Ppm)	P ^H	Turb. (NTU)	Conduct. (mho/cm)	T.D.S. (ppm)	Salinity (ppm)	T.D.S. Salinity Alkalinity (ppm) (ppm)	Phoshph ate (mg/I)	Sulphate Nitrate (mg/I)	Nitrate (mg/T)	Flourid e (mg/T)	Total Hardness (ppm)	Chloride (mg/I)
16	JETPAR	30.8	5.3	8.81	0.17	4.11X10 ⁻³	2110	2100	640	35	225.25	299	6.0	197	667.3
17	ANIYARI	31.4	5.8	8.90	0.40	3.49X10 ⁻³	1820	1810	330	21	283.23	87	1.2	255	667.2
18	KHAKHARECHI	31.5	6.4	8.28	0.21	1.37X10 ⁻³	730	720	240	20	130.28	400	1.0	270	151.4
19	SARVAD	31.9	5.8	8.28	0.18	5.21X10 ⁻³	2580	2570	130	17	260.48	135	1.0	340	1326.3
20	MOTA DAHISHARA	31.4	5.2	8.58	1.75	1.78X10 ⁻³	880	870	430	16	259.01	430	6.0	125	155.8
21	KHAKHARADA	32.2	5.6	8.58	0.49	0.74X10 ⁻³	399	390	150	13	138.51	350	1.1	200	135.3
22	JODHAPAR NADI	30.8	30.8 6.3	7.85	0.29	1.87X10 ⁻³	940	930	210	15	264.41	307	6.0	999	394.1
23	CHACHAPAR	31.3	31.3 5.5	89.8	2.35	1.88X10 ⁻³	1020	1010	430	20	362.07	413	1.0	175	306.6
24	24 NANI VAVADI	32.3	6.5	8.69	0.37	1.11X10 ⁻³	515	510	230	26	275.28	380	1.2	198	122.2
25	25 NICHI MANDAL	31.9	31.9 5.4 8.69	8.69	0.17	1.39X10 ⁻³	029	099	290	17	149.32	415	1.0	221	196.4

TABLE - 10 ANALYSIS RESULT OF THE SAMPLES COLLACTED FROM MORBI CITY IN OCT - 2010

S.St. No:	Name of Sample Station	Temp D.O. (ppm)	(°C) (ppm)	P ^H	Turb. (NTU)	Conduct. (mho/cm)	T.D.S. (ppm)	Salinity (ppm)	T.D.S. Salinity Alkalinity (ppm) (ppm)	Phoshph ate (mg/I)	Sulphate (mg/I)	Nitrate (mg/I)	Flourid e (mg/T)	Total Hardness (ppm)	Chloride (mg/I)
-	SHRI RAM SOCIETY	29.2	4.1	8.15	0.30	1.88X10 ⁻³	066	086	710	10	109.25	341	6.0	95	240.2
7	YADUNANDAN SOCIETY 29.1	29.1	5.4	7.67	0.59	2.35X10 ⁻³	1140	1130	650	13	180.23	95	1.0	270	245.8
m	PANCHAVATY SOCIETY 30.6	30.6	5.8	8.49	0.97	1.32X10 ⁻³	720	710	430	22	187.32	411	6.0	480	211.1
4	JAIN DERASAR	29.2	5.5	8.48	0.49	1.88X10 ⁻³	910	006	350	27	222.30	232	1.0	390	245.3
2	GAYATRI NAGAR	30.3	7.6	8.31	0.44	4.97X10 ⁻³	2460	2450	590	19	208.57	179	1.1	820	1170.7
9	BHAGVATI PARK	30.1	30.1 7.5	8.40	0.17	2.25X10 ⁻³	1380	1370	670	35	139.35	367	1.0	330	341.5
7	SCIENCE COLLEGE	31.8	5.8	8.35	0.52	1.28X10 ⁻³	510	490	590	18	141.72	412	6.0	614	308.7
∞	RELIF NAGAR	29.6	4.9	8.90	0.51	1.58X10 ⁻³	780	770	450	15	192.37	110	1.0	150	177.8
6	BHUVNESHWER PARK	30.2	6.3	8.35	0.57	1.27X10 ⁻³	580	570	210	19	285.45	359	1.1	320	178.7
10	10 KENAL ROAD	29.2	8.3	8.47	0.38	0.95X10 ⁻³	460	450	330	32	175.25	318	1.0	320	130.2

TABLE - 11 ANALYSIS RESULT OF THE SAMPLES COLLACTED FROM MALIA CITY IN OCT- 2010

S.St. No:	Name of Sample Station	Temp	Temp D.O. (*C) (*Ppm)	ЬН	Turb. (NTU)	Turb. Conduct. T.D.S. Salinity Alkalinity (NTU) (mho/cm) (ppm) (ppm) (ppm)	T.D.S. (ppm)	Salinity (ppm)	Alkalinity (ppm)	Phoshph ate	Sulphate Nitrate (mg/l)	Nitrate (mg/l)		Total Hardness	Chloride (mg/l)
	The state of the s	,								(mg/1)			(mg/l)	(mdd)	0
111	11 MATAM CHOCK	30.7	30.7 7.9 8.27		0.44	0.44 4.85X10 ⁻³ 2440 2430	2440	2430	570	20	200.48	172	1.0	800	1161.5
12	12 BHISTI VAD	30.2	99.8 9.9		0.36	0.36 2.12X10 ⁻³ 1020	1020	1010	430	35	211.25	290	6.0	195	348.9
13	13 RAIL, STATION ROAD	30.2 7.4 8.49	7.4	8.49	0.20	0.20 2.24X10 ⁻³ 1360	1360	1350	029	34	131.15	370	1.0	347	342.5
14	14 KHARIVADI	30.6	30.6 6.5 8.29	8.29	1.20	.20 4.40X10 ⁻³ 2190	2190	2180	110	16	239.48	117	12.0	320	1257.5
15	15 RAMJI MANDIR CHOCK 30.4 6.5 8.58 0.54 3.10X10 ⁻³ 1560 1550	30.4	6.5	8.58	0.54	3.10X10 ⁻³	1560	1550	470	20	271.72	94	1.0	250	612.2

TABLE - 12 ANALYSIS RESULT OF THE SAMPLES COLLACTED FROM MORBI-MALIA RURAL IN OCT - 2010

S.St.	Name of Sample Station	Temp	D.O.	ЬН	Turb.		T.D.S.	Salinity	T.D.S. Salinity Alkalinity	Phoshph ate	Sulphate Nitrate	Nitrate	Flourid	Total Hardness	Chloride
		(2)	(C) (ppm)	W.	(1110)	(mno/cm)	(mdd)	(mdd)	(mdd)	(mg/I)	(mg/I)	(mg/I)	(mg/I)	(mdd)	(mg/I)
16	JETPAR	30.3	6.3	8.69	0.37	2.12X10 ⁻³	1050	1040	430	39	210.21	291	1.0	180	349.1
17	ANIYARI	30.4	6.5	8.58	0.52	3.14X10 ⁻³	1550	1540	450	22	278.23	92	1.1	220	620.9
18	KHAKHARECHI	30.4	7.2	8.30	0.15	1.48X10 ⁻³	740	730	290	23	115.39	377	1.1	260	141.1
19	SARVAD	30.7	6.7	8.35	1.27	4.38X10 ⁻³	2195	2180	130	17	232.58	137	1.1	310	1245.2
20	MOTA DAHISHARA	30.5	6.3	8.73	0.31	0.88X10 ⁻³	444	440	220	15	235.11	423	1.0	130	148.7
21	KHAKHARADA	31.2	6.7	8.55	0.82	0.51X10 ⁻³	247	240	170	13	138.51	345	1.2	170	71.5
22	JODHAPAR NADI	30.3	7.2	8.27	0.65	1.25X10 ⁻³	650	640	210	15	245.12	333	6.0	350	259.5
23	CHACHAPAR	30.3	5.8	9.05	4.60	1.70X10 ⁻³	830	820	520	25	359.55	421	1.0	85	248.8
24	24 NANI VAVADI	31.1	7.2	8.23	0.58	0.77X10 ⁻³	384	380	350	29	276.38	371	1.2	135	6.89
25	25 NICHI MANDAL	31.2	6.4	8.19	0.59	1.80X10 ⁻³	890	028	370	18	148.21	401	1.2	295	342.4

REFERENCES

- 1. A.K. Rana, M.J. Kharodawala, J. M. Patel, R.K. Rai, B.S. Patel and Dabhi, Asian J.Chem., 14, 1209 (2002).
- A.K. Rana, M.J. Kharodawala, H.R. Dabhi, D.M. Suthar, D.N. Dave,
 B.S. Patel and R.K. Rai, Asian J. Chem., 14, 1178 (2002).
- 3. D.K. Bhoi, D.S. Raj, Y.M. Mehta, M.B. Chauhan and M.T.Machhar, Asian J.Chem., 17, 404 (2005).
- 4. P.A. Hamilton and D.K. Helsel, Ground Water, 33, 2 (1995)
- E. Broun, M.W. Skovgstd and M.J. Fishman, Method for Collection and Analysis of water Samples for Dissplved Minerals and Gases, Vol.5 (1974)
- 6. N. Manivasagam, Physico-chemical Examination of water, Sewage And Industrial Effluents, Pragati Prakashan, Meerut (1984).
- 7. A.I. Vogel, Text Book of Quantitative, Inorganic Analysis, 4th Edn., ELBC, London (1978).
- APHA: American Public Health Association, Standard Methods for Examinnation of water and Wastewater, 16th Edn., APHA-WPCF-AWWA, Washington (1985).
- 9. International Standard for Drinking Water, 3rd Edn., WHO, Geneva (1971)
- 10. The Gazette of India: Extraordinary, Part-II, 3, 11 (1991).
- 11. A.J. Dhembare, G.M. Pondhe and C.R. Singh, poll. Res., 17, 87 (1998).
- 12. J.E. Mekee and H.W. Wolf, Water Quality Criteria. The Resources Agency of Californina State Water Quality Control Board (1978).
- APSFSL, Andhra Pradesh State Forensic Science Laboratories,
 Annual Report (1988).

- 14. D.G. Miller, Nitrate in Drinking Water, Water Research Centre, Medmenham (1981).
- NEERI: National Environment Engineering Research Institute,
 Disinfection of Small Community Water Supplies, Nagpur (1972).
- 16. J.W. White, J.Agri. Food Chem., 23, 886 (1975).
- 17. Fluoride in Drinking Water, WHO/IWA, (2001).

Principal Investigator
Dr. B. M. Bhoshdadia
UGC MRP F.No. 47-550/88(WRO)
M. M. Science College, Morbi (Guj)